A set of capacities

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Mixing Set with Divisible Capacities

Given rational numbers C0, . . . , Cm and b0, . . . , bm, the mixing set with arbitrary capacities is the mixed-integer set defined by conditions s + Ctzt ≥ bt, 0 ≤ t ≤ m, s ≥ 0, zt integer, 0 ≤ t ≤ m. Such a set has applications in lot-sizing problems. We study the special case of divisible capacities, i.e. Ct/Ct−1 is a positive integer for 1 ≤ t ≤ m. Under this assumption, we give an extended...

متن کامل

The mixing-MIR set with divisible capacities

We study the set S = {(x, y) ∈ + × Zn : x + Bjyj ≥ bj, j = 1, . . . , n}, where Bj , bj ∈ +−{0}, j = 1, . . . , n, and B1| · · · |Bn. The set S generalizes the mixed-integer rounding (MIR) set of Nemhauser and Wolsey and the mixing-MIR set of Günlük and Pochet. In addition, it arises as a substructure in general mixed-integer programming (MIP), such as in lot-sizing. Despite its importance, a n...

متن کامل

The mixing set with divisible capacities: A simple approach

We give a simple algorithm for linear optimization over the mixing set with divisible capacities, and derive a compact extended formulation from such an algorithm. The main idea is to apply a suitable unimodular transformation to obtain an equivalent problem that is easier to analyze.

متن کامل

An axiomatization of entropy of capacities on set systems

We present an axiomatization of the entropy of capacities defined on set systems which are not necessarily the whole power set, but satisfy a condition of regularity. This entropy encompasses the definition of Marichal and Roubens for the entropy of capacities. Its axiomatization is in the spirit of the one of Faddeev for the classical Shannon entropy. In addition, we present also an axiomatiza...

متن کامل

Entropy of capacities on lattices and set systems

We propose a definition for the entropy of capacities defined on lattices. Classical capacities are monotone set functions and can be seen as a generalization of probability measures. Capacities on lattices address the general case where the family of subsets is not necessarily the Boolean lattice of all subsets. Our definition encompasses the classical definition of Shannon for probability mea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Časopis pro pěstování matematiky a fysiky

سال: 1933

ISSN: 1802-114X

DOI: 10.21136/cpmf.1933.121896